20,150 research outputs found

    Dynamic Graph Stream Algorithms in o(n)o(n) Space

    Get PDF
    In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Ω(n)\Omega(n) space, where nn is the number of vertices, existing works mainly focused on designing O~(n)\tilde{O}(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. nn is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n)o(n) space algorithms for estimating the number of connected components with additive error εn\varepsilon n and (1+ε)(1+\varepsilon)-approximating the weight of minimum spanning tree, for any small constant ε>0\varepsilon>0. The latter improves previous O~(n)\tilde{O}(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are ε\varepsilon-far from having the property. We consider the problem of testing kk-edge connectivity, kk-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly O~(n1ε)\tilde{O}(n^{1-\varepsilon}) space, which is o(n)o(n) for any constant ε\varepsilon. To complement our algorithms, we present Ω(n1O(ε))\Omega(n^{1-O(\varepsilon)}) space lower bounds for these problems, which show that such a dependence on ε\varepsilon is necessary.Comment: ICALP 201

    Holographic entanglement entropy in general holographic superconductor models

    Get PDF
    We study the entanglement entropy of general holographic dual models both in AdS soliton and AdS black hole backgrounds with full backreaction. We find that the entanglement entropy is a good probe to explore the properties of the holographic superconductors and provides richer physics in the phase transition. We obtain the effects of the scalar mass, model parameter and backreaction on the entropy, and argue that the jump of the entanglement entropy may be a quite general feature for the first order phase transition. In strong contrast to the insulator/superconductor system, we note that the backreaction coupled with the scalar mass can not be used to trigger the first order phase transition if the model parameter is below its bottom bound in the metal/superconductor system.Comment: 14 pages, 6 figures. arXiv admin note: text overlap with arXiv:1203.6620 by other author

    Proof of the Labastida-Marino-Ooguri-Vafa Conjecture

    Full text link
    Based on large N Chern-Simons/topological string duality, in a series of papers, J.M.F. Labastida, M. Marino, H. Ooguri and C. Vafa conjectured certain remarkable new algebraic structure of link invariants and the existence of infinite series of new integer invariants. In this paper, we provide a proof of this conjecture. Moreover, we also show these new integer invariants vanish at large genera.Comment: 57pages, typos corrected, add some detail

    Testing Small Set Expansion in General Graphs

    Get PDF
    We consider the problem of testing small set expansion for general graphs. A graph GG is a (k,ϕ)(k,\phi)-expander if every subset of volume at most kk has conductance at least ϕ\phi. Small set expansion has recently received significant attention due to its close connection to the unique games conjecture, the local graph partitioning algorithms and locally testable codes. We give testers with two-sided error and one-sided error in the adjacency list model that allows degree and neighbor queries to the oracle of the input graph. The testers take as input an nn-vertex graph GG, a volume bound kk, an expansion bound ϕ\phi and a distance parameter ε>0\varepsilon>0. For the two-sided error tester, with probability at least 2/32/3, it accepts the graph if it is a (k,ϕ)(k,\phi)-expander and rejects the graph if it is ε\varepsilon-far from any (k,ϕ)(k^*,\phi^*)-expander, where k=Θ(kε)k^*=\Theta(k\varepsilon) and ϕ=Θ(ϕ4min{log(4m/k),logn}(lnk))\phi^*=\Theta(\frac{\phi^4}{\min\{\log(4m/k),\log n\}\cdot(\ln k)}). The query complexity and running time of the tester are O~(mϕ4ε2)\widetilde{O}(\sqrt{m}\phi^{-4}\varepsilon^{-2}), where mm is the number of edges of the graph. For the one-sided error tester, it accepts every (k,ϕ)(k,\phi)-expander, and with probability at least 2/32/3, rejects every graph that is ε\varepsilon-far from (k,ϕ)(k^*,\phi^*)-expander, where k=O(k1ξ)k^*=O(k^{1-\xi}) and ϕ=O(ξϕ2)\phi^*=O(\xi\phi^2) for any 0<ξ<10<\xi<1. The query complexity and running time of this tester are O~(nε3+kεϕ4)\widetilde{O}(\sqrt{\frac{n}{\varepsilon^3}}+\frac{k}{\varepsilon \phi^4}). We also give a two-sided error tester with smaller gap between ϕ\phi^* and ϕ\phi in the rotation map model that allows (neighbor, index) queries and degree queries.Comment: 23 pages; STACS 201
    corecore